Protein Pockets: Inventory, Shape, and Comparison

نویسندگان

  • Ryan G. Coleman
  • Kim A. Sharp
چکیده

The shape of the protein surface dictates what interactions are possible with other macromolecules, but defining discrete pockets or possible interaction sites remains difficult. First, there is the problem of defining the extent of the pocket. Second, one has to characterize the shape of each pocket. Third, one needs to make quantitative comparisons between pockets on different proteins. An elegant solution to these problems is to sort all surface and solvent points by travel depth and then collect a hierarchical tree of pockets. The connectivity of the tree is determined via the deepest saddle points between each pair of neighboring pockets. The resulting pocket surfaces tessellate the entire protein surface, producing a complete inventory of pockets. This method of identifying pockets also allows one to easily compute important shape metrics, including the problematic pocket volume, surface area, and mouth size. Pockets are also annotated with their lining residue lists and polarity and with other residue-based properties. Using this tree and the various shape metrics pockets can be merged, grouped, or filtered for further analysis. Since this method includes the entire surface, it guarantees that any pocket of interest will be found among the output pockets, unlike all previous methods of pocket identification. The resulting hierarchy of pockets is easy to visualize and aids users in higher level analysis. Comparison of pockets is done by using the shape metrics, avoiding the complex shape alignment problem. Example applications show that the method facilitates pocket comparison along mutational or time-dependent series. Pockets from families of proteins can be examined using multiple pocket tree alignments to see how ligand binding sites or how other pockets have changed with evolution. Our method is called CLIPPERS for complete liberal inventory of protein pockets elucidating and reporting on shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison.

Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algo...

متن کامل

Computational approaches to identifying and characterizing protein binding sites for ligand design.

Given the three-dimensional structure of a protein, how can one find the sites where other molecules might bind to it? Do these sites have the properties necessary for high affinity binding? Is this protein a suitable target for drug design? Here, we discuss recent developments in computational methods to address these and related questions. Geometric methods to identify pockets on protein surf...

متن کامل

Real-time ligand binding pocket database search using local surface descriptors.

Because of the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function c...

متن کامل

Anatomy of protein pockets and cavities: Measurement of binding

Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structurebased ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings, ...

متن کامل

Comparison of the efficacy of Matrica and %0.2 Chlorhexidine mouthwashes on 3-6 mm pockets in patients with chronic periodontitis

Comparison of the efficacy of Matrica and %0.2 Chlorhexidine mouthwashes on 3-6 mm pockets in patients with chronic periodontitis Dr. M. Paknejad* - Dr. TS. Jafarzadeh** - Dr. AM. Shamloo*** *- Associate Professor of Periodontics Dept. - Faculty of Dentistry – Tehran University of Medical Sciences. **- Assistant Professor of Dental Materials Dept. Faculty of Dentistry – Tehran University of Med...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 50 4  شماره 

صفحات  -

تاریخ انتشار 2010